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Abstract This paper focuses on the motion planning
to detumble and control of a space robot to capture
a non-cooperative target satellite. The objective is to
construct a detumbling strategy for the target and a
coordination control scheme for the space robotic sys-
tem in post-capture phase. First, the dynamics of the
kinematically redundant space robot after grasping the
target is presented, which lays the foundation for the
coordination controller design. Subsequently, optimal
detumbling strategy for the post-capture phase is pro-
posed based on the quartic Bézier curves and adaptive
particle swarm optimization algorithm subject to the
specific constraints. Both detumbling time and con-
trol torques were taken into account for the genera-
tion of the optimal detumbling strategy. Furthermore,
a coordination control scheme is designed to track the
designed reference path while regulating the attitude of
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the chaser to a desired value. The space robot success-
fully dumps the initial velocity of the tumbling satel-
lite and controls the base attitude synchronously. Sim-
ulation results are presented for detumbling a target
with rotationalmotionusing a sevendegree-of-freedom
redundant space manipulator, which demonstrates the
feasibility and effectiveness of the proposed method.

Keywords Detumbling strategy · Coordination
control · Post-capture · Tumbling target

1 Introduction

In light of the space robots currently planned by world-
wide space agencies, an increase in the number and
the capacity of robot applied in space missions will
be a foregone conclusion in the coming future to ful-
fill the increasing demands of satellite maintenance,
on-orbit assembly and space debris removal etc. [1–
4]. One of the most challenging work for on-orbit
servicing of satellites is post-capture detumbling. The
objective of the post-capture phase is to detumble the
rotational target satellite and stabilize the base syn-
chronously. Accordingly, particular planning and con-
trol techniques have to be developed to cope with the
challenging problem.

Many methodologies and strategies on the topic
of space robot trajectory planning and motion control
have been proposed in the literature. Yoshida et al. [5]
employed the concept of reaction null-space (RNS)-
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based reactionlessmanipulation to remove the time loss
and the velocity limit ofmanipulation both for kinemat-
ically non-redundant and redundant space manipual-
tors. Moreover, the RNS-based trajectory planning
method was also applied in [6,7] to capture a tumbling
target by using the momentum conservation law. Later,
Xu et al. [8] presented a point-to-point path planning
method using non-holonomic characteristic of free-
floating space robot,while the base attitude and the end-
effector’s pose can be regulated synchronously. In [9], a
unified singularity analysis and computation-effective
avoidance method was proposed for a class of non-
spherical-wrist manipulators. Lampariello et al. [10]
studied the real-time trajectory planning for a robot to
optimally catch a flying target, in which the desired
joint trajectories were parameterized with B-splines
and the Sequential Quadratic Programming (SQP)
method was employed to search the optimal solution.
Bézier curve was used in [11] to delineate the joint tra-
jectory of space robot, while particle swarm optimiza-
tion (PSO) method was applied to solve the optimiza-
tion problem. Furthermore, Wang et al. [12] synthe-
sized the concept of RNS and dynamic balance control
in the framework of task-priority-based method to plan
the motion of a kinematically redundant space robot.

For themotion control problem of space robot, Xu et
al. [13] proposed an adaptive control scheme for a space
robotic system with an attitude control base, whereas
dynamic uncertainties were taken into account. Mat-
suno and Saito [14] introduced a coordinate and input
transformation algorithm,which converts an affine sys-
tem with a drift term into the time-state control form.
Kai [15] applied model predictive control (MPC) to
the attitude stabilization and the trajectory tracking
control problem for a 3-dimensional universal joint
space robot. Afterward, a nonlinear MPC scheme with
obstacle avoidance was introduced in [16] for end-
effector’s path tracking. In order to achieve the best
trajectory tracking for non-holonomic-wheeled mobile
robots, Khooban et al. [17] introduced an optimal inter-
val type II fuzzy proportional-integral-derivative (PID)
controller with a teaching-learning-based optimization
for evolving the parameters of the control. After that,
Niknam et al. [18] developed a new optimal type II
fuzzy sliding mode controller to control a class of
uncertain nonlinear systems in the presence of external
disturbances. More recently, robust control [19], slid-
ing mode control [20], robust fuzzy sliding mode con-
trol [21], nonlinear H-infinity control [22] and robust

explicit MPC [23] were also adopted in the control of
multi-DOF robotic manipulators.

The aforementioned studies mainly focused on tra-
jectory planning and motion control in the pre-capture
phase. After capturing an uncontrolled satellite by a
space manipulator, the target should be brought to rest
as fast as possible, while the space manipulator will
be demanded to apply torques to the target gently for
removing any relative velocity. Nevertheless, only few
studies have been investigated on the topic of opti-
mal detumbling motion planning. In [24], a manipu-
lator control law for the post-capture phase based on
the concept of RNS was introduced to transfer angu-
lar momentum from the base toward the manipulator
and to decrease the joint velocity. Yoshida et al. [25]
presented a distributed momentum control method for
post-capture phase, whereas the target angular momen-
tum was transferred in the reaction wheels with mini-
mum base attitude disturbance. An impedance control
scheme has been introduced in [26] for a free-floating
space robot in grasping of a tumbling target with model
uncertainty. Besides, impedance control [27] was also
used in dual-arm cooperative humanoid manipulators.
However, optimal path planning and base attitude sta-
bilization are not addressed in these work. In [28,29],
a method for the guidance of a robotic manipulator to
first intercept and then detumble a non-cooperative tar-
get satellite was introduced based on Pontryagin’s min-
imum principle, while the minimum detumbling time
was considered. A time-optimal detumbling maneuver
along an arbitrary armmotionwas introduced in [30] to
stabilize a tumbling target satellite while paying atten-
tion to limitations on the grasping force and torque.
Afterward, Abad et al. [31] designed an optimal con-
trol scheme forminimizing base attitude disturbance, in
which the uncertainties in the initial and final boundary
conditions were taken into account. Zhang et al. [32]
derived a coordinated stabilization scenario with an
adaptive slidingmode control for space robot after cap-
turing a large inertia target.

In the previous approaches, the following shortcom-
ings can be listed in terms of detumbling motion plan-
ning and in terms of control: (1) generally, the target
motion was not generated using an optimization algo-
rithm. Therefore, one cannot obtain an optimal solution
of the detumbling motion; (2) the detumbling process
for a non-cooperative target is a multi-objective, multi-
constraint optimization problem, which was not con-
sidered sufficiently in the previous approaches; (3) in
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Fig. 1 Schematic diagram
of space robot and target
satellite

order to ensure the consistency and continuity of the
end-effectors path, the detumbling motion should be
continuous and smooth, which was not implemented
in the previous approaches; (4) coordination controller
both for the base attitude and end-effector pose was not
implemented with the considering of detumbling strat-
egy. As one can see, how to detumble the rotational
motion of the target is absolutely crucial to perform
further on-orbit servicing. It is noted that the design of
a detumbling strategy for space manipulator is still a
challenging work till nowadays.

The main motivation for this paper is to obtain a
new detumbling control framework for kinematically
redundant spacemanipulator after capturing a tumbling
target satellite. The reason for choosing kinematically
redundant manipulator is the existence of infinite solu-
tion which can be employed to fulfill additional con-
straints. Bézier curve for its simplicity and normaliza-
tion is chosen to delineate the planned target’s path
after capturing. Moreover, constrained PSO algorithm
is employed to search the optimal time and terminal
pose of the target to generate the reference detum-
bling path for the end-effector. A coordination control
scheme is derived to stabilize both space robotic base
and end-effector synchronously. The original contri-
bution of this paper is the design of the framework
including optimal detumbling strategy and coordina-
tion controller for space robot in post-capture phase.

The rest of this paper is organized as follows: Sect. 2
introduces the multi-body dynamics for the combined
space robotic system after capturing. An optimization-
based detumbling strategy using quartic Bézier curve
and constrained PSO is derived in Sect. 3. Section 4
presents a closed-form solution for coordination con-
trol of base attitude and space robotic end-effector
to detumble the non-cooperative satellite. Section 5
shows the simulation results of the proposed detum-
bling strategy and coordination control method applied
to kinematically redundant space robot. The conclusive
remarks are listed in Sect. 6.

2 Dynamics after capturing

In the post-capture phase, the spacemanipulator and the
target satellite constitutes a combined system as shown
in Figs. 1 and 2. The space robotic system is com-
posed of a spacecraft, an n DOF manipulator, in total
n+1 bodies. Many investigations have been conducted
in the field of space robot dynamics. Refer to [33–
36], the dynamics equations of the space robot using
Lagrangian mechanism can be expressed as follows

Hsψ̈ s + cs(ψ s, ψ̇ s) = us − JTse f e (1)

where

ψ̇ s �
[
ẋb
θ̇m

]
, us �

[
f b
τm

]
. (2)
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Fig. 2 Snapshot of space robot and target after capturing

Hs ∈ R
(n+6)×(n+6) is the generalized mass matrix of

the space robotic system, cs(ψ s, ψ̇ s) ∈ R
n+6 is gen-

eralized Coriolis and centrifugal force. ẋb ∈ R
6 rep-

resents the vector of linear and angular velocity of the
base and θ̇m ∈ R

n is joint motion rate of manipula-
tor. f b, f e ∈ R

6 are the force and moment exert on
the base and end-effector, respectively. τm ∈ R

n is the
joint torque of the manipulator and Jse = [Jb Jm] is
the Jacobian matrix with Jb ∈ R

6×6 and Jm ∈ R
6×n

being the Jacobian matrices for the base and for the
manipulator, respectively.

The dynamics motion of the target satellite can be
expressed by

Ht ẍt + ct = JTte f e (3)

where ẋt ∈ R
6 is the vector of linear velocity ṙ t and

angular velocity ω̇t of the target. The generalized mass
matrix Ht and nonlinear term ct can be written as

Ht =
[
mtE3 0
0 It

]
, ct =

[
mtωt × ṙ t
ωt × Itωt

]
(4)

with mt and It being the mass and inertia tensor of the
targe satellite. E3 is an identity matrix. The grasping
matrix Jte can be expressed as

Jte =
[
Re
t −ρ̃tg
0 Re

t

]
(5)

Rt
e is the rotation matrix from end-effector’s frame to

target body-fixed frame and ρtg is the position vector
of the grasping point with respect to the mass center of
the target. For an arbitrary vector ρ = [ρx , ρy, ρz], ρ̃

is defined as

ρ̃ =
⎡
⎣ 0 −ρz ρy

ρz 0 −ρx

−ρy ρx 0

⎤
⎦ (6)

Refer to Eq. (3), the force and moment exerted by
the manipulator f e can be written as

f e = J−T
te Ht ẍt + J−T

te ct (7)

In post-capture phase, the velocity and acceleration
relationship between the end-effector and the grasping
point on the target can be established by

ẋe = Jseψ̇ s = Jte ẋt (8)
ẍe = Jseψ̈ s + J̇seψ̇ s = Jte ẍt (9)
ẍt = J−1

te ẍe = J−1
te (Jseψ̈ s + J̇seψ̇ s) (10)

Substituting Eqs. (7) and (10) into (1) and elimi-
nating f e, one can obtain the dynamic equation of the
space robotic system after capturing a target:

Hψ̈ s + c(ψ s, ψ̇ s) = us (11)

where

H = Hs + JTseJ
−T
te HtJ

−1
te Jse

c(ψ s, ψ̇ s) = cs + JTseJ
−T
te ct + JTseJ

−T
te HtJ̇seψ̇ s (12)

3 Target detumbling strategy

Refer to Eq. (3), dynamics of the rotational motion of
the target satellite can be delineated byEuler’s equation
as

τ t = Itω̇t + ωt × Itωt (13)

where τ t ∈ R
3 is the external moments applied to the

target. In pre-capture phase, it is reasonable to assume
that the target satellite is free from any external forces
and torques, i.e., r̈ t = 0 and τ t = 0.

As shown in Fig. 2, for a grasping point ρtg =
[−0.35, 0, 0.4275]mwith inertia parameters of the tar-
get satellite It = diag(8.4, 12.18, 12.84) kgm2, two
simulation cases are performed with different initial
angular velocities. The trajectory of the grasping point
in the y–z plane of inertia frame in 5000 s is shown
in Fig. 3, which indicates that the grasping point tra-
jectory is sensitive to the initial angular velocity of the
target. After capturing, the end-effector and the grasp-
ing pointwill coincidewith zero relative velocity. Refer
to Eq. (11), the rotational motion of the target satellite
will continue if no detumbling strategy is applied to
the target. Therefore, how to drive the target satellite
from its given initial angular velocity to rest in optimal
time andwithminimum energy consumption is of great
interest in this section.

In order to assist the design of the detumbling strat-
egy and coordination controller, the following assump-
tions are presented.
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Fig. 3 Grasping point trajectory for different initial angular velocity

Assumption 1 Vehicular operations will guide the
chaser satellite (mounted with manipulator) to a nec-
essary ready-to-capture pose with respect to the target
satellite. A path tracking algorithm with an ideal visual
servo tracker will align the end-effectors velocity with
that of the grasping point on the target, such that the
capture impact can be minimized.

Assumption 2 The targets body-fixed frame is located
at the targets center of mass. Its mass properties can
be estimated roughly from the observation [29,30]. The
states of the target at capturing instant can be deter-
mined with provided sensors mounted on the base and
manipulator.

Assumption 3 The mass properties parameters of the
space robot (base and manipulator) can be determined
accurately with parameter identification methods in
pre-capture phase.

3.1 Detumbling strategy

A detumbling strategy for a tumbling target satellite is
to find anoptimal path from its initial states to rest under
given constraints. The initial states of the target can be
determined with specified sensors, however, the termi-
nal time and terminal states to detumble the target are
still free. In this section, the target’s rotationalmotion is
expressed with Z–Y–X Euler angles φ = [α, β, γ ] due
to its intuitional and decoupling reasons. φ are param-
eterized by Bézier curve which is widely adopted in

the field of computer graphics and robotics to model
smooth curves [11]. A variable with superscripts s, d
and f stands for its start, desired and final value. A quar-
tic Bézier curve (m = 4) is employed to describe the
rotational motion of the target

φi (τ ) =
m∑
j=0

b j,m(τ )Pi j

=
m∑
j=0

(
m

j

)
(1 − τ)m− jτ j Pi j τ ∈ [0, 1] (14)

where i = 1, 2, 3 is the index of the Euler angles φ.
The polynomials b j,m(τ ) are known as Bernstein basis
polynomial of order m and

(m
j

)
is the binomial coef-

ficient. Pi j is the given point to construct the Bézier
curve. Since τ is the normalized time, for the detum-
bling execution time T = tf − ts, if we define t = τ ·T ,
the target rotationalmotion can be calculated as follows

φ̇i = dφi

dτ

dτ

dt
= 1

T
˙̄φi = m

T

m−1∑
j=0

b j,m−1(τ )(Pi, j+1−Pi j )

(15)

φ̈i = d2φi

dτ 2
d2τ

dt2
= 1

T 2
¨̄φi

= m(m − 1)

T 2

m−2∑
j=0

b j,m−2(τ )(Pi, j+2 − 2Pi, j+1 + Pi j )

(16)

The initial rotational states of the targetφs and φ̇
s
can

be determined at the instant of the capturing. The objec-
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tive of the detumbling strategy is to make ωf
t = φ̇

f = 0

and ω̇t
f = φ̈

f = 0, which gives us four boundary con-
ditions. As one can see, φ̈

s
and φf are still not assigned

whichwill be determined through optimization. Substi-
tuting the initial and final states variables into Eqs. (14),
(15) and (16) andmeeting the four boundary conditions

φs
i , φ̇

s
i , φ̇

f
i and φ̈

f
i⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φs
i = φi (τ = 0) = Pi0, φf

i = φi (τ = 1) = Pi4
φ̇s
i = φ̇i (τ = 0) = 4

T (Pi1 − Pi0), φ̇f
i = φ̇i (τ = 1)

= 4
T (Pi4 − Pi3)

φ̈f
i = φ̈i (τ = 1) = 12

T 2 (Pi4 − 2Pi3 + Pi2)

(17)

From the above equations, one can derive the expres-
sion of the control point Pi j

Pi0 = φs
i , Pi1 = T

4
φ̇s
i + φs

i , Pi2 = φf
i , Pi3 = φf

i , Pi4 = φf
i .

(18)

After capturing, the angular velocity of the end-
effector ωe = ωt . Moreover, the torques applied to
the end-effector τ e = −τ t . In order to keep the end-
effector without damage during operation, the mag-
nitude of the torques applied to the end-effector is
bounded to be below a prescribed value ‖τ e‖ ≤ τmax.
Substituting Eq. (18) into (16)

φ̈i = 12(1 − τ)

T 2 [(Pi2 − 2Pi1 + Pi0)(1 − τ)

+ 2(Pi3 − 2Pi2 + Pi1)τ ]
= 12(1 − τ)

T 2[
(φf

i − φs
i − T

2
φ̇s
i ) − (3φf

i − 3φs
i − T φ̇s

i )τ

]
(19)

The torques applied to the end-effector can be
determined through τ t , which can be calculated using
Eq. (13) with ωt = Jφφ̇ and ω̇t = J̇φφ̇ + Jφφ̈.

Jφ =
⎡
⎣0 − sin α cosα cosβ

0 cosα sin α cosβ

1 0 − sin β

⎤
⎦ ,

J̇φ =
⎡
⎣0 −α̇ cosα −α̇ sin α cosβ − β̇ cosα sin β

0 −α̇ sin α α̇ cosα cosβ − β̇ sin α sin β

0 0 −β̇ cosβ

⎤
⎦
(20)

Substituting the expressions of ω̇t and ωt into
Eq. (13), considering the torque constraints ‖τ e‖ ≤
τmax, the following inequalities can be obtained{

f 1(T ) = ItJφ φ̈ + It J̇φ φ̇ + Jφ φ̇ × ItJφ φ̇ + τmax ≥ 0
f 2(T ) = τmax − ItJφ φ̈ − It J̇φ φ̇ − Jφ φ̇ × ItJφ φ̇ ≥ 0

(21)

Given a set of the target’s terminal state φf , the path
for target rotation detumbling can be generated through
Eqs. (14)–(18) with only one variable T . The corre-
spondingoptimal detumbling time T canbedetermined
using binary search under prescribed constraints refer
to Eq. (21):

T ≥ max{Ti = min( fi1(T ) ≥ 0 ∩ fi2(T ) ≥ 0)} (22)

where i = 1, 2, 3 represents the index of the vectors
f 1 and f 2.
Practically, not only the optimal detumbling time,

but also the control torques applied to the target should
be minimized. Therefore, during the optimization pro-
cess, the following objective function is defined

� = w1T + w2

∫ T

0
τT
t τ tdt (23)

where w1, w2 > 0 are the weights to trade off the opti-
mal detumbling time and control torques of the end-
effector.

Consequently, define p = φf as designvariables, the
detumbling strategy can be transformed to the follow-
ing optimization problem which will be solved using
PSO algorithm as illustrated in Sect. 3.2

min
p

�( p)

subject to: ‖τ t( p)‖ ≤ τmax, pmin ≤ p ≤ pmax

(24)

where the searching region [ pmin, pmax] can be deter-
mined according to the initial states of the target’s
rotational motion. Once p is determined, the optimal
detumbling time T and the target rotational motion can
be solved accordingly. The required trajectories of the
end-effector can be derived as follows⎧⎪⎨
⎪⎩
qde = qdt = Euler2quat(φ)

ωd
e = ωd

t = Jφφ̇

ω̇d
e = ω̇d

t = J̇φφ̇ + Jφφ̈

(25)

⎧⎪⎨
⎪⎩
rde = rst + Rt(φ)ρtg

ṙde = ṙst + ωd
t × ρtg

r̈de = r̈st + ω̇d
t × ρtg + ωd

t × (ωd
t × ρtg)

(26)
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Fig. 4 Schematic diagram
of PSO with 6 particles

where Rt(φ) is the rotation matrix from 	t to 	I ,
Euler2quat(φ) is a function which transforms the ori-
entation with Euler angles into quaternion.

Asone can see, the generation of the detumblingpro-
files is decoupled from the actual space robot that will
be performing it. This decoupling is achieved through
the use of τmax in Eq. (24), since only the torque limits
of the end-effector are considered in the design of the
detumbling strategy. However, this requires the gener-
ated detumbling path expressed in Eqs. (25) and (26)
has to be in the workspace W(θm) [45] of the actual
space robot, which means, the generated detumbling
profiles need to fulfill the constraints not only at the
level of end-effector’s torques, but also at the level of
joint limits. The determination of the detumbling strat-
egy can therefore be expressed as follows under the
constraints of the joint limits

min
p

�( p)subject to: ‖τ t( p)‖ ≤ τmax,

pmin ≤ p ≤ pmax, x
d
e( p) ∈ W(θm)

(27)

where xde( p) is the generated detumbling path with
application of Eqs. (25) and (26). The workspace
W(θm) of the actual space robot is determined by the
joint limits. As shown in Fig. 5, in order to meet the
requirements of the joint limits, an additional loop is
added in the optimization algorithm to check whether
the designed detumbling strategy can be implemented
by the actual space robot.

3.2 PSO formulations

The original PSO algorithm was inspired by the social
behavior of biological organisms like flying birds,
swimming fishes, etc., specially the ability of groups of

some species of animals to work as a whole in locating
desirable positions in a given area [38]. This seeking
behavior was associated with that of an optimization
search for solutions to nonlinear equations in a real-
valued searching space. It is a stochastic searchmethod
but with a simpler philosophy. The main benefits of
PSO [37] can be listed:

• The descent gradient of the fitness function used in
traditional optimization method is not required.

• PSO is more compatible and robust compared with
other classical optimization techniques.

• PSO guarantees the convergence to the optimum
solution.

The PSO algorithm first initializes a population of
particles with random initial values within the feasible
searching space. The dimension of each particle repre-
sents the number of design variables. The states of each
particle adjust in swarm taking into account the effect
of stochastic, cognitive and social influence. Each parti-
cle is evaluated by the fitness function to search its own
best known position (local) so far and the swarm’s best
known position (global) so far in the searching space.
The movement of each particle is guided by the local
and global best position and updated in each genera-
tion. When better positions are discovered, these will
then be chosen to lead themovement of the swarm. This
process is repeated by each generation until a specified
condition is met or a promising solution is found. A
schematic diagram of the PSO algorithm with 6 parti-
cles is shown in Fig. 4.

As illustrated in Eq.(24), the determination of the
detumbling strategy is an optimization problem with
multiple constraints. Suppose the swarm is com-
posed of np particles, the position and velocity of
the i th particle is, respectively, represented by pi =
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(pi1, pi2, . . . , piK ) and vi = (vi1, vi2, . . . , vi K ). K is
the dimension of each particle. In this paper, sinceEuler
angles were employed to delineate the target’s rotation,
pi = φf and the dimension of each particle K = 3.
According to the principle of the PSO algorithm, the
velocity and position update of the i th particle at each
step can be expressed as follows{

vik = wvik + c1r1(pbik − pik) + c2r2(pgk − pik)
xik = xik + vik

(28)

where w is defined as an inertia weight to control the
scope of the search. c1, c2 are acceleration constants
and r1, r2 are the uniformly distributed values between
[0, 1]. k = 1, 2, . . . , K and i = 1, 2, . . . , np. The vec-
tor (pbi1, pbi2 , · · · , pbiK ) stores the local best position
of i th particle so far and (pg1 , pg2 , . . . , pgK ) represents
the global best position of the swarm so far.

A widely used strategy for the inertia weight ω is to
maintain a constant value over the algorithms iterations.
It is shown that standard PSO [38] has a weak capabil-
ity to search a fine particle due to the lack of the speed
control mechanism. Refer to [39,40], by adjusting the
value ofω, the swarmhas a great tendency to eventually
constrict itself down to the area containing the best fit-
ness and explore that area in detail. The inertia weight
w is an essential factor for the PSO efficiency which
effectively controls the scope of the search [41]. In this
paper, a linear decreasing strategy on w is employed

w = wmin + itermax − iter

itermax
(wmax − wmin) (29)

where itermax is themaximal number of iterations,wmin

and wmax are the lower and upper bound of inertia
weight, respectively. From Eq. (28), the updated veloc-
ity of i th particle is consisting of three components: a
momentumof its previous velocity, velocity increments
according to its local best and global best position.
Eventually, the position of the particle is renewed with
its previous position and new displacement is induced
by the new velocity.

The so-called acceleration coefficients or control
parameters c1 and c2 determine the relative influence of
cognitive and social component for a particle’s move-
ment. Based on a convergence analysis [42], the veloc-
ity update equation in Eq. (28) can be transformed to
vik = χ

(
vik + ϕ1r1(pbik − xik) + ϕ2r2(pgk − xik)

)
with a constriction coefficient χ , where χ = ω and
χϕi = ci (i = 1, 2). Refer to [40], a widely used rela-

tion in PSO between c1, c2 and ω can be established as
follows

χ = 2

|2 − ϕ − √
ϕ2 − 4ϕ| , ϕ = ϕ1 + ϕ2 (30)

As one can see, while for ϕ > 4 convergence would
be quick and guaranteed. For the sake of simplicity,
most implementations of constricted particle swarms
use equal values for both c1 and c2. Using the con-
stant ϕ = 4.1 to ensure convergence, the values χ =
ω ≈ 0.72984 and ϕ1 = ϕ2 = 2.05 are obtained, which
results in c1 = c2 ≈ 1.49617. These values are nor-
mally used as a standard setting in the PSO algorithm.

How to choose the fitness function depends on the
required space missions and the optimized objectives.
In order to choose the local and global best particles
in each iteration, refer to Sect. 3.1, fitness function as
expressed in Eq. (23) is employed in PSO to evaluate
the quality of each particle in swarm and drive them
to the optimal target. Another issue that encounters in
PSO is the practical constraints imposed to the design
variables as illustrated in Eq. (24). Repairing infeasible
solutions expressed in [43] are adopted in this paper to
tackle the constraints problem.

pik =

⎧⎪⎨
⎪⎩
pmin if pik < pmin

pmax if pik > pmax

pik otherwise

(31)

Note that both position and velocity handling need to be
considered in repairing strategy. If pik < pmin without
velocity alteration, vik < 0 holds will drive the particle
out of the feasible searching space again (similarly for
pik > pmax and vik > 0). Another reason for velocity
handing is the significant influence of velocity to the
performance of the PSO. When it is too large, possible
solution may be skipped; otherwise, if the velocity is
too small, the convergence speed would be too slow.
Therefore, it would make sense to set the velocity to
zero or invert the kth velocity component so that the
particle returns to its feasible searching region. Fig-
ure 5 shows the flowchart of the determination of target
detumbling strategy using PSO algorithm. In each iter-
ation, the fitness function is evaluated and is compared
with the value computed in previous iterations. If the
new value is better, new estimated values for design
variables are stored. After completion of the iteration
loop, the PSO with adaptive inertia weight offers an
optimal solution of T ∗ and p∗.
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Fig. 5 The flowchart of target detumbling strategy using PSO
algorithm

4 Coordination control

In order to control both base and end-effector syn-
chronously, we are interested in writing the motion
Eq. (11) in terms of the generalized velocities of the
base and the end-effector, i.e., ẋb and ẋe. Define a new
velocity vector as follows

ψ̇ �
[
ẋb
ẋe

]
(32)

Since Jse = [Jb Jm], refer to Eq. (9), one can derive
the joint acceleration as follows

θ̈m = J+
m(ẍe − J̇seψ̇ s − Jb ẍb) (33)

Using Eq. (33) to replace the corresponding compo-
nent of ψ̈ s in (11), the following dynamic equation can
be obtained

Dsψ̈ + cs(ψ, ψ̇) = us (34)

where

Ds = H
[

E6 06
−J+

mJb J+
m

]
(35)

cs(ψ, ψ̇) = c(ψ s, ψ̇ s) + H
[

06
−J+

m

]
J̇seψ̇ s (36)

where J+
m is the pseudo-inverse of Jm andE6 is an iden-

tity matrix. Note that Eq. (34) illustrates the dynamic
motion of the combined chaser and target with respect
to their task-space variables. In practice, it is important
to keep the base attitude unchanged in the post-capture
phase for the purpose of (1) maintaining the orientation
of pointing instruments and scanning devices mounted
on the base; (2) reducing the collision risk during
detumbling target satellite. In this paper, the translation
of the base is relaxed, which means no control forces
are applied to the base and the motion of the manip-
ulator will disturb the base translation. Therefore, the
generalized force input us can be expressed as follows

us =
[
03×1

τ̄

]
and τ̄ =

[
τ b

τm

]
(37)

One can derive a reduced form of the dynamic
motion (34) when we define the following variables

ψ̇ �
[
ṙb˙̄ψ

]
and ˙̄ψ �

[
ωb

ẋe

]
(38)

where ṙb and ωb represent translational and angular
velocities of the base, respectively. Also, if the mass
matrix Ds and nonlinear term cs(ψ, ψ̇) can be parti-
tioned as follows

Ds =
[
D11 D12

D21 D22

]
and cs(ψ, ψ̇) =

[
c1
c2

]
(39)

where D11 ∈ R
3×3 and c1 ∈ R

3. The dimensions of
the rest of sub-matrices and sub-vectors are consistent.
The following equations can be obtained

D11 r̈b + D12
¨̄ψ + c1 = 0 (40)

D̄ ¨̄ψ + c̄ = τ̄ (41)

where D̄ and c̄ can be derived as D̄ = D22−D21D
−1
11 D12

and c̄ = c2 − D21D
−1
11 c1.

Equation (41) shows that with proper design of
torque control τ̄ , the base attitude and end-effector’s
pose could be controlled synchronously. Therefore, in
order to not only track the optimal detumbling path as
proposed in Sect. 3, but also to regulate the base atti-
tude, a coordination control scheme can be obtained
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Fig. 6 Schematic diagram of coordination control for space robot after capturing

based on Eq. (41) to generate torque commands for
joint motors and attitude actuators. To this end, a feed-
back linearization method based on dynamic model in
Eq. (41) is employed to construct the coordination con-
trol scheme. The torque of coordination control for both
base attitude and end-effector’s pose can be calculated
as

τ̄ = ˆ̄c+ ˆ̄D y (42)

where ·̂ represents the estimated value of a variable.
Refer to [44,45], a proportion-differentiation (PD)
strategy is devised for the control input y after feed-
back linearization:

y = ¨̄ψd + Kdδ
˙̄ψ + Kpδψ̄

=
⎡
⎣ ω̇d

b + Kbd(ω
d
b − ωb) + Kbpδεb

r̈de + Krd(ṙde − ṙe) + Krp(rde − re)
ω̇d
e + Ked(ω

d
e − ωe) + Kepδεe

⎤
⎦ (43)

where K·p and K·d represent the feedback gains for
pose and velocity, which are positive, definite matrices.
Here, unit quaternion q = {η, ε} ∈ R

4 is employed to
devise the coordination control scheme (η is the scalar
part, and ε is the vector part of the quaternion). The
quaternion errors between q1 and q2 can be calculated
as follows where ⊗ is the quaternion production oper-
ator

{δη, δε} = q1 ⊗ q−1
2

= {η1η2 + εT1ε2, η2ε1 − η1ε2 − ε̃1ε2} (44)

It is required that the base attitude is unchanged after
capturing the target, i.e., ω̇d

b = ωd
b = 0. xde , ẋ

d
e and ẍde

can be obtained from Eqs. (25) and (26). Substituting
the control law in Eq. (43) into (41), one can obtain the
following uncoupled differential equations

δω̇b + Kbdδωb + Kbpδεb = 0 (45)

δ r̈e + Krdδ ṙe + Krpδre = 0 (46)

δω̇e + Kedδωe + Kepδεe = 0 (47)

where δ ṙe = ṙde − ṙe and δω = ωd − ω. Obviously,
Eq. (46) is exponentially stable. Refer to [28,45], the
stability of system (45) and (47) can be derived by using
the Lyapunov argument:

V = 1

2
δεTbKbpδεb + 1

2
‖ωb‖2 (48)

By substituting the quaternion propagation and calcu-
lating the time derivative of V :

V̇ = −ωT
bKbdωb (49)

So V̇ ≤ 0 for all t . Hence, global asymptotic con-
vergence of the orientation error can be obtained. The
tracking error δεb and δxe depends on the selection
of Kp and Kd. The stability of (47) can be determined
similarly. Accordingly, as t → ∞, one can derive that
qb → qdb, re → rde and qe → qde . Figure 6 shows the
implementation of the coordination control profile for
the space robotic system in the post-capture phase.

5 Simulation results

To verify the application of the proposed detumbling
strategy and coordination control method, we present
an example using a kinematically redundant manipu-
lator to capture a tumbling target in this section. As
shown in Figs. 1 and 2, the chaser satellite has 6 DOF,
while the manipulator is a 7-DOF arm. The kinematic
and dynamic parameters of the space robot are listed
in Table 1, where ai , bi and Ii are expressed in its own
body frame.
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Table 1 Mass and inertia parameters of space robot

Base Link1 Link2 Link3 Link4 Link5 Link6 Link7 Target

m (kg) 200 4.0 8.0 2.0 6.0 2.0 2.0 5.0 20.0

Ixx 50 0.3 0.8 0.1 0.7 0.1 0.1 0.4 8.4

Iyy 100 0.3 0.5 0.1 0.4 0.1 0.1 0.4 12.18

Izz 100 0.2 0.8 0.1 0.7 0.1 0.1 0.2 12.84

ax (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

ay (m) 0.0 0.0 −0.7 0.0 −0.5 0.0 0.0 0.0 –

az (m) 0.0 0.128 0.084 0.09 0.084 0.09 0.084 0.12 –

bx (m) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

by (m) 0.084 0.084 −0.66 −0.084 −0.46 0.084 −0.09 0.0 –

bz (m) −0.6 0.128 0.0 0.0 0.0 0.0 0.0 0.21 –
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Fig. 7 Trajectories of the end-effector and grasping point in pre-capture phase

Refer to [40,42], the involved parameters of the PSO
algorithm are listed as follows:

np = 10; itermax = 100;
c1 = c2 = 1.496;wmax = 0.7298;wmin = 0.4; (50)

With given initial states of the target, refer to Eq. (27),
the determination of the detumbling strategy relies on
the targetmass properties estimation and the prescribed
constraints. As shown in Fig. 5, the PSO algorithm first
determines the optimal detumbling time T ∗ at each iter-
ation, the terminal states of the target φf are optimized
with fitness function expressed in Eq. (23). The detum-
bling path is accordingly generated.

5.1 Simulation results in pre-capture phaser

A typical process of a space robot capturing a target
satellite can be roughly divided into two phases: pre-
capture and post-capture. In the pre-capture phase, the
manipulator moves from its home position to inter-
cept the grasping point on the target with zero rel-
ative velocity. The grasping point is selected with
ρtg = [−0.35, 0, 0.4275]m expressed in target body
frame. In the post-capture phase, the manipulator has
to bring the target to rest under given constraints. This
paper focuses on the detumbling strategy and control
scheme for post-capture phase. In order to ensure con-
sistency of the paper, Fig. 7 gives the trajectories of
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Fig. 8 Snapshot of space manipulator and target in pre-capture phase

the end-effector and the grasping point in pre-capture
phase. Figure 8 shows the snapshot of the space robot
and the target in the pre-capture phase.

As shown in Figs. 7 and 8, the gripper will close at
t∗ = 23.60 s when the relative pose between the end-
effector’s frame and grasping point’s frame is small
enough, which is considered that the two frames coin-
cide. In our paper, when the relative distance and ori-
entation are, respectively, smaller than 1 mm and 1◦,
it is assumed that the two frames of the end-effector
and grasping point coincide and pre-capture phase ends
at such an instant. A combined system is established
accordingly and the detumbling strategy has to per-
form to rest the rotational motion of the target. At the
capture moment t∗ = 23.60 s, the states of the target
and space robot are listed as follows:

qsb = (0.9547,−0.0979, 0.2807, 0.0104);
ωs
b = (3.883,−6.085, 1.467) × 10−3;

φs
t = (0.1554, 0, 0); φ̇

s
t = (−0.06, 0, 0);

(51)

5.2 Coordination control simulation

Refer to [29], it is not possible to identify the abso-
lute values of the mass parameters from observation of
torque-free tumbling motion of a target satellite. Only
non-dimensional inertia parameters can be obtained
with scaling technique. In order to verify the effec-
tiveness of the proposed controller, inertia parame-
ters uncertainty is introduced into the detumbling path
design as shown in Table 2. In fact, the torque con-
straints of the end-effector ‖τ e‖ ≤ τmax should not be

Table 2 Estimated mass properties and control gains

mt (kg) Ixx Iyy Izz Kd Kp T ∗

Nominal 20 8.4 12.18 12.84

20% offset 24 10.08 14.616 15.408 4.0 5.0 5.1 s

50% offset 30 12.60 18.27 19.26 6.0 10.0 5.4 s

violated for safety reasons.Therefore, it is reasonable to
set the inertia parameters of the target with larger con-
servative values in the detumbling process. As one can
see from Eq. (22), larger inertia parameters will require
a longer detumbling time with bigger end-effector’s
internal forces and torques.

Two simulation cases with different settings in
Table 2 were illustrated to analyze the performance of
theproposedmethod. FromFigs. 9 and13, the proposed
method only uses 20 or 40 iterations, which indicates
that it is a fast-converging optimization. The statisti-
cal results of the proposed method were introduced to
demonstrate more clearly the feasibility of the method.
The implementation of the PSO was written in C and
complied using the Code::Blocks complier on an i7-
5600U 2.60 GHz CPU. A total of 1000 runs are per-
formed to increase the credibility of the testing. The
PSO algorithm always finds the optimal solution for
the detumbling strategy and the average consumption
time for each run is 0.02415 s, with higher performance
CPU, the computing time will be even less.

When there are 20%uncertainties inmass properties
estimation, PSO algorithm found a solution T ∗ = 5.1 s
and p∗= (0.1539, 0.07186, −0.0707) that fulfill all the
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Fig. 9 Fitness evaluation and required torques with 20% target uncertainties
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Fig. 10 Designed detumbling strategy with 20% target uncertainties

constraints. The convergence of best fitness function
versus the number of iteration is shown in Fig. 9. The
fitness value decreases monotonously which exhibits
the searching power of the PSO algorithm. In terms of
the searching solution p∗ and the detumbling time T ∗,
the desired motion laws of the end-effector and control
torques are shown in Fig. 10. One can see that with the

designed detumbling strategy, the target is successfully
driven to rest subject to the prescribed constraints. As
shown in Fig. 9, the torque limits of the end-effector
are set to ‖τi,max‖ = 0.6Nm which will be fulfilled
through adjusting the detumbling time T with Eq. (22).

Once the reference path to detumble the target is
generated, the coordination control method proposed
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Fig. 11 Results of the coordination controller with 20% target uncertainties
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Fig. 12 Results of the control torques with 20% target uncertainties

in Sect. 4 will be applied. Refer to Eq. (43), the con-
trol gains k·d = 4.0 and k·p = 5.0 are selected for
implementation of the closed-form solution. Figures 11
and 12 show the simulation results for end-effector
and base attitude control. It is noted that the control
procedure starts at t∗ until the target was driven to

rest (ωe = ωt = 0). During the detumbling pro-
cess, the coordination controller tries to keep the base
attitude without changing. The magnitude of the base
angular velocity is less than 10−3 rad/s. Moreover,
the controller could track the designed reference path,
as well as detumble the rotational motion of the tar-
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Fig. 13 Fitness evaluation and required torques with 50% target uncertainties

get. The end-effector’s tracking accuracy of position
‖δre‖ ≤ 5 × 10−4 m and orientation ‖δεe‖ ≤ 10−3,
respectively. Besides, the end-effector’s velocity ẋe
decreases to zero gradually, which also indicates that
the rotation of the target was eliminated. One can also
note that both missions for controlling end-effector’s
pose and base attitude were implemented. With differ-
ent feedback gains, it is obvious that the coordination
controller performance analysis can be represented by
a second-order system s2 + 2ζωns + ω2

n = 0, where
ζ is the damping ratio and ωn is the undamped natu-
ral frequency. According to Eqs. (45)–(47), ζ = Kd

2
√

Kp

and ωn = √
Kp. The transient response of the system

highly relied on the selection of K·p and K·d.
Similarly, when there are 50% uncertainties in

mass properties estimation, PSO algorithm success-
fully found a solution T ∗ = 5.4 s and p∗ =(0.1525,
0.1321, -0.0722) that fulfill all the constraints. The
convergence of best fitness function versus the num-
ber of iteration is shown in Fig. 13, and the desired
motion laws of the end-effector and control torques are
shown in Fig. 14. With large mass properties estima-
tion, the detumbling strategy varied accordingly. Com-
paring Figs. 9 with 13, a longer detumbling time is
required when the target mass properties estimation is
with larger values.

In order to analyze the influence of the parameter
selection, the control gains k·d = 6.0 and k·p = 10.0
are selected for implementation of the closed-form
solution. The initial conditions were set as same as

in Eq. (51). Figures 15 and 16 show the simulation
results for end-effector pose and base attitude control.
With different control gains, the transient response of
the controller varied accordingly. It is noted that after
detumbling the magnitude of the base angular velocity
‖ωb‖ ≤ 10−3 rad/s, the end-effector’s tracking accu-
racy of position ‖δre‖ ≤ 5 × 10−4 m and orientation
‖δεe‖ ≤ 10−3, respectively.However, it requires larger
control torques both to stabilize the base and control
the manipulator when compared Figs. 12 and 16. This
means better estimation of the target mass properties
will benefit for the design of the coordination con-
troller. One can note that both missions for controlling
end-effector’s states and base attitude were success-
fully implemented.

In the aforementioned two simulation cases, the
mass ratio between servicer and target is relatively
high, which means that the target cannot heavily dis-
turb the motion of the servicer. Additionally, the tar-
get’s initial tumbling is only rotating along a sin-
gle axis. In order to verify the feasibility and per-
formance of the proposed method, another simula-
tion case was implemented with mt = 100 kg and
It = diag (18.45, 30.18, 32.84) kgm2. The gripper
closes at t∗ = 29.02 s when the relative pose between
the end-effector’s frame and grasping point’s frame
is smaller than a prescribed threshold. At the capture
instant t∗ = 29.02 s, the states of the target and space
robot are listed as follows:
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Fig. 14 Designed detumbling strategy with 50% target uncertainties
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Fig. 15 Results of the coordination controller with 50% target uncertainties
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Fig. 16 Results of the control torques with 50% target uncertainties
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Fig. 17 Fitness evaluation and required torques with lower mass ratio

qsb = (0.9620, 0.0647, 0.2624, 0.0393);
ωs
b = (2.000,−0.033, 5.234) × 10−3;

φs
t = (−0.1124,−0.6708, 0.3707);

φ̇
s
t = (−0.0786,−0.0270, 0.0325);

(52)

The torque limits of the end-effector are set to
‖τi,max‖ = 0.6Nm as in the above simulation cases.
When lower mass ratio between servicer and target
was considered, PSO algorithm found a solution T ∗ =
11.40 s and p∗ = (−0.3373,−0.7780, 0.7278) that ful-
fill all the constraints. The determination of the detum-
bling time T was derived with Eq. (22). The conver-
gence of the best fitness function versus the number
of iteration is shown in Fig. 17. In terms of the deter-

mined optimal solution p∗ and the detumbling time T ∗,
the desired motion laws of the end-effector and control
torques are shown in Fig. 18.

With the generated detumbling path as shown in
Fig. 18, the coordination control method proposed in
Sect. 4 will be applied to stabilize the whole space
robotic system. Refer to Eq. (43), the control gains
k·d = 4.0 and k·p = 6.0 are selected for implemen-
tation of the closed-form solution. Figures 19 and 20
show the simulation results for end-effector and base
attitude control when lower mass ratio between ser-
vicer and target was considered. The control procedure
begins at t∗ until the target was driven to rest (ωe =
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Fig. 18 Designed detumbling strategy with lower mass ratio
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Fig. 19 Results of the coordination controller with lower mass ratio
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Fig. 20 Results of the control torques with lower mass ratio

ωt = 0). During the detumbling process, the coordi-
nation controller tries to keep the base attitude without
changing. Themagnitude of the base angular velocity is
less than 10−3 rad/s. Furthermore, the controller could
track the designed reference path, as well as detumble
the rotational motion of the target. The end-effector’s
tracking accuracy of position ‖δre‖ ≤ 2×10−3 m and
orientation ‖δεe‖ ≤ 10−2, respectively. Besides, the
end-effector’s velocity ẋe decreases to zero gradually,
which also implies that the rotation of the target was
eliminated. One can also note that both missions for
controlling end-effector’s pose and base attitude were
implemented. However, refer to Figs. 18 and 20, when
lower mass ratio between servicer and target was con-
sidered, it is reasonable to obtain a longer detumbling
duration with the prescribed end-effector’s torque lim-
its. Besides, larger control torques both for base and
joint actuators were required to detumble and stabilize
the space robotic system. Conclusively, the designed
detumbling strategy and coordination control scheme
are applicable and effective to perform satellite grasp-
ing missions with application of space robot.

6 Conclusions

In post-capture phase, in order to drive a tumbling target
satellite to rest as soon as possible and with minimum
time and control torques, an optimal detumbling strat-
egy and coordination control scheme for space robot

have been presented. The main features of this paper
can be listed as follows:

1. The dynamic equations for kinematically redun-
dant space robot after capturing a non-cooperative
target satellite was derived in terms of generalized
velocities of the base and end-effector, which lays
a foundation for the controller design.

2. Quartic Bézier curves are employed to delineate
the detumbling path and constrained particle swarm
optimization (PSO) with adaptive inertia weight is
applied to search the optimal terminal states sub-
ject to prescribed constraints.Both detumbling time
and control torques are considered during the opti-
mization.

3. A coordination control scheme was developed to
detumble the target rotational motion and regulate
base attitude synchronously.

The proposed method in this paper successfully
dumps the initial rotational velocity of the tumbling
target and stabilize the base attitude in the post-capture
phase. The ability and effectiveness of the detumbling
strategy and coordination controller was demonstrated
by simulation results. Robust coordination controller
design in uncertain knowledge of measurements and
parameters will be addressed in our future work.
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